Haemodynamic effects of cold versus warm fluid bolus in healthy volunteers: a randomised crossover trial

Olof Wall, Lars Ehrenberg, Eva Joelsson-Alm, Johan Mårtensson, Rinaldo Bellomo, Christer Svensén and Maria Cronhjort

The use of intravenous fluid bolus (FB) therapy is common in patients during anaesthesia and in the perioperative, emergency and critical care setting. The most frequent reasons to administer an FB are hypotension and low urine output. The rationale is to increase cardiac index, mean arterial pressure (MAP) or both in order to ultimately increase oxygen delivery to vital organs. The haemodynamic effects of FB therapy, however, may be small and short-lived in both major surgery and critical illness. For example, in a study of patients with circulatory shock there was a significant increase in MAP of 8 mmHg at 30 minutes, which was absent after 60 minutes. Despite such short-lived effects, clinicians still use FB therapy as the mainstay in resuscitation of critically ill and surgical patients.

We hypothesised that changes in both cardiac index and MAP during the infusion of a bolus of 500 mL of crystalloid would be significantly altered by the temperature of the fluid given (either room temperature or near body temperature).

Methods
Ethics approval was obtained from the Ethical Review Board of Stockholm, Sweden, (EPN 2016/986-31/1) and the Swedish Medical Products Agency as a clinical drug trial. The trial was registered on EudraCT (no. 2016-002548-18) and on Clinicaltrials.gov (identification no. NCT03209271).
The study was conducted at the research facilities of the Department of Clinical Science and Research at Södersjukhuset, Karolinska Institutet, Stockholm, Sweden, from January to April 2017.

Informed consent was obtained from each volunteer. Twenty-one healthy volunteers were recruited for this study.

Study design

The inclusion criteria were participants aged 18 years or older and with no significant health problems. The exclusion criteria were a grade of II or higher as per ASA (American Society of Anesthesiologists Physical Status Classification System) grading system and known pregnancy.

The volunteers fasted for at least 6 hours and were encouraged to void before the experiment. The volunteers were supine during the study session. Randomisation was provided by allocation from sequentially numbered opaque envelopes before study commencement, prepared by members of the research group not involved in randomisation or performing the study. At the first session of each volunteer, an envelope was opened randomly allocating them to receive either 500 mL of acetated Ringer’s solution at room temperature (“cold”) or warmed to body temperature (“warm”) (22°C v 38°C).

After a period of at least one day, the volunteers returned for their second session in a crossover fashion.

Monitoring

We used a bedside monitor (Philips Healthcare, Amsterdam, The Netherlands) for oxygen saturation measured by pulse oximetry (S_o_2) and electrocardiogram for heart rate. In all participants, cardiac index, MAP, systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse rate (PR) were measured continuously by a non-invasive device using the arterial clamp method by having an inflatable ClearSight (Edwards Lifesciences, Irvine, CA, USA) cuff around the middle phalanx. The pulsating artery is clamped by applying equivalent counter pressure by an inflatable bladder cuff, adjusted 1000 times per second to keep the artery at a constant volume. The volumes are measured via a plethysmograph and the finger artery waveform is used to calculate BP and cardiac output from the pulse contour with proprietary algorithms. The device is approved by the United States Food and Drug Administration for the continuous measurement of cardiac index and BP, with a good agreement with invasive BP monitoring.14-16 Body temperature was measured by a forehead zero heat flux sensor 3M SpotOn (3M Health Care, Maplewood, MN, USA).17-19

Cardiac index, MAP, SBP, DBP and PR were measured every 20 seconds for 2 hours. Temperature and S_o_2 were continuously recorded every 5 minutes during infusion, and then every 15 minutes thereafter until the end of the experiment at 120 minutes.

Table 1. Baseline characteristics of subjects*

<table>
<thead>
<tr>
<th>Groups</th>
<th>Warm</th>
<th>Cold</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cardiac index, L/min/m2</td>
<td>3.5 (3.2–3.8)</td>
<td>3.5 (3.1–3.8)</td>
<td>0.54</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td>89.5 (85.9–93.0)</td>
<td>90.5 (86.3–94.7)</td>
<td>0.38</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>119.1 (114.3–123.9)</td>
<td>119.3 (112.8–125.7)</td>
<td>0.91</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>72.2 (69.4–75.0)</td>
<td>72.9 (69.5–76.3)</td>
<td>0.56</td>
</tr>
<tr>
<td>PR, beats/min</td>
<td>65.6 (61.3–69.9)</td>
<td>65.4 (60.2–70.6)</td>
<td>0.91</td>
</tr>
<tr>
<td>Temperature, °Celsius</td>
<td>36.6 (36.4–36.8)</td>
<td>36.7 (36.5–36.8)</td>
<td>0.68</td>
</tr>
<tr>
<td>Pulse oximetry oxygen saturation, (%)</td>
<td>99.6 (99.2–99.9)</td>
<td>99.2 (98.8–99.6)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

DBP = diastolic blood pressure. MAP = mean arterial pressure. PR = pulse rate. SBP = systolic blood pressure. * Values are mean with 95% CI.

Figure 1. Cardiac index during the 15 minutes of fluid bolus administration

Mean (standard error of the mean) cardiac index during the 15 minutes of fluid bolus administration in subjects receiving a warm (dotted line) and cold (solid line) fluid bolus, respectively. P value represents the interaction between time and group on repeated measures analysis of variance.
Fluid bolus
An 18-20-gauge intravenous line (BD Venflon, BD, Franklin Lakes, NJ, USA) was inserted in the upper extremity for fluid infusion. The fluid was acetated Ringer’s solution (Baxter International, Deerfield, IL, USA). The infusion time was set to 15 minutes via Braun infusion pumps (B Braun Melsungen, Melsungen, Germany). The fluid in the “cold” group was kept to a standardised room temperature of 22°C using a laboratory cooler. The fluid in the “warm” group was administered via a Fluido (The 37Company, Amersfoort, The Netherlands) fluid warming system at a set temperature of 38°C, as the warming system only allows settings of full degrees.

Outcomes
The primary outcome of the study was the change in cardiac index during the 15-minute infusion. The secondary outcomes were changes in MAP, SBP, DBP, PR, \(\text{SpO}_2 \), and body temperature during the 15-minute infusion as well as changes in all these variables during 120 minutes. We also calculated time for return to baseline values after the end of the FB for cardiac index, MAP, SBP, DBP and PR.

Baseline was defined as the mean of the three measurements before the FB.

A response was defined as any rise above baseline after the termination of the FB for all variables except PR, for which a response was defined as a decrease below this level.

The time to return to baseline was defined as three consecutive measurements at or below baseline, except for PR, for which it was defined as three consecutive measurements at or above baseline.

Table 2. Average change in haemodynamic variables from baseline during the fluid bolus*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Warm, average change†</th>
<th>Cold, average change†</th>
<th>Average difference†</th>
<th>(P)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac index, L/min/m²</td>
<td>0.09 (0.06–0.11)</td>
<td>0.03 (0.01–0.06)</td>
<td>−0.05 (−0.09 to −0.02)</td>
<td>0.001</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td>0.60 (0.26–0.95)</td>
<td>4.02 (3.63–4.41)</td>
<td>3.42 (2.86–3.97)</td>
<td>0.001</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>1.94 (1.39–2.49)</td>
<td>5.55 (5.01–6.09)</td>
<td>3.61 (2.81–4.40)</td>
<td>0.760</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>0.17 (−0.01 to 0.44)</td>
<td>2.90 (2.56–3.24)</td>
<td>2.73 (2.25–3.20)</td>
<td>0.001</td>
</tr>
<tr>
<td>PR, beats/min</td>
<td>0.80 (0.47–1.13)</td>
<td>−1.33 (−1.66 to −1.01)</td>
<td>−2.13 (−2.61 to −1.65)</td>
<td>0.010</td>
</tr>
</tbody>
</table>

DBP = diastolic blood pressure. MAP = mean arterial pressure. PR = pulse rate. SBP = systolic blood pressure. * Values are mean with 95% CI. † Average difference and change calculated with the paired \(t \) test, while the \(P \) values were calculated with repeated measures analysis of variance for the same period.

Statistics
Descriptive statistics were used when appropriate. Normality was tested using the Shapiro–Wilk test. Comparisons were made using paired \(t \) test and analysis of variance for repeated measures for the change over 15 and 120 minutes for all variables. Fisher exact test was used to test the difference in fluid response and return to baseline was tested with Wilcoxon signed rank test.

A sample size of 21 subjects was calculated to detect a difference of 0.36 L/min/m² cardiac index between the different treatments, standard deviation of 0.55 L/min/m² (due to lack of previous data) for the difference within pairs given a power of 80%, and a two-sided level of significance.
of 5% with a paired t test. As the study was conducted, we found the monitoring gave access to data points every 20 seconds. Having more data points for analysis made a more advanced and robust statistical analysis possible. Since the original power analysis was made for only one time point, while the study measured the outcome variable repeatedly, this significantly heightens the power using a repeated measures analysis of variance.

Statistical analysis was performed using IBM SPSS Statistics, version 23 for Windows (IBM, Armonk, NY, USA) and Stata version 11.2 (StataCorp, College Station, TX, USA). P < 0.05 was considered significant.

Results

We included 21 healthy volunteers, 14 men and seven women with a mean age of 28 years (95% CI, 24.8–32.0). Their baseline characteristics are presented in Table 1. Mean height was 177 cm (95% CI, 171.8–182.8), mean weight was 74 kg (95% CI, 67–80.6), mean body mass index was 23.2 kg/m² (95% CI, 22.1–24.4), and mean body surface area 1.91 m² (95% CI, 1.79–2.02).

While 21 volunteers were recruited for two sessions each, only 41 sessions were available for analysis (21 warm and 20 cold) due to a malfunction in the retrieval of the study data. Since the cold session was excluded, no data for volunteer no. 19 were included in the analysis. Due to a technical issue with the monitoring noticed during the fluid infusion, one study session had to be terminated and the participant returned later to complete a second session. The mean time between study sessions was 10 days.

Cardiac index

Baseline cardiac index was similar in the two groups (Table 1). There was a small but statistically significant increase in cardiac index during the 15 minutes of FB infusion with warm fluid compared with cold fluid (P = 0.001) (Figure 1) (Table 2). There was no statistically significant difference in the increase of cardiac index during the overall 120-minute period (online Appendix, Figure 4; available at cicm.org.au/Resources/Publications/Journal). There were 16 responders (80%) in the warm group and 13 (65%) in the cold group (Table 3). There was no statistically significant difference in the median (interquartile range [IQR]) time for cardiac index to return to baseline for these participants (Table 3).

Blood pressure

Baseline MAP was similar in the two groups (Table 1). During FB infusion, MAP increased significantly more in the cold fluid group (Figure 2) (Table 2). A similar effect was seen for DBP (P = 0.001) (online Appendix, Figure 5) but not SBP (online Appendix, Figure 6). There was no statistically significant difference in the increase of MAP during the full 120 minutes of observation (online Appendix, Figure 7). There were 12 responders in the warm group and 18 in the cold group (P = 0.06) (Table 3). The median (IQR) time for MAP to return to baseline for these participants was similar in both groups at between 20 and 30 minutes (Table 3). The mean increases for each variable and group over 120 minutes are presented in the online Appendix, Figures 7–9.

Pulse rate

The baseline PR was similar in the two groups (Table 1). Warm FB administration significantly increased PR more than cold FB (P = 0.01) (Figure 3). There was no statistically significant difference in the PR during the overall 120 minutes (online Appendix, Figure 10). Significantly more patients in the cold group had a decrease in PR (Table 3). The median (IQR) time for PR to return to baseline for these participants was similar and less than a few minutes in both groups (Table 3).

Pulse oximetry and temperature

There were no instances of desaturation (oxygen saturation < 95%).

Baseline temperature was similar in both groups (Table 1). At 15 minutes, body temperature was significantly lower in the cold FB group (P = 0.046) (online Appendix, Figure 11). There...
Table 3. Time to return to baseline for haemodynamic values*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Warm</th>
<th>Cold</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cardiac index, L/min/m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>16/20 (80.0%)</td>
<td>13/20 (65.0%)</td>
<td>0.48</td>
</tr>
<tr>
<td>Return to baseline</td>
<td>14/16 (87.5%)</td>
<td>13/13 (100%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Time to baseline (min), median (IQR)</td>
<td>15.8 (3.8–64.3)</td>
<td>45.3 (10.7–60.7)</td>
<td>0.89</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>12/20 (60.0%)</td>
<td>18/20 (90.0%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Return to baseline</td>
<td>9/12 (75%)</td>
<td>13/18 (72.2%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Time to baseline (min), median (IQR)</td>
<td>22.7 (3.3–105.0)</td>
<td>27.7 (5.3–105.0)</td>
<td>0.89</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>14/20 (70.0%)</td>
<td>17/20 (85.0%)</td>
<td>0.45</td>
</tr>
<tr>
<td>Return to baseline</td>
<td>9/14 (64.3%)</td>
<td>9/17 (52.9%)</td>
<td>0.72</td>
</tr>
<tr>
<td>Time to baseline (min), median (IQR)</td>
<td>37.3 (9.3–105.0)</td>
<td>40.3 (10.3–105.0)</td>
<td>0.75</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>10/20 (50.0%)</td>
<td>15/20 (75.0%)</td>
<td>0.19</td>
</tr>
<tr>
<td>Return to baseline</td>
<td>9/10 (90.0%)</td>
<td>9/15 (60.0%)</td>
<td>0.18</td>
</tr>
<tr>
<td>Time to baseline (min), median (IQR)</td>
<td>11.3 (3.0–38.0)</td>
<td>40.3 (10.3–105.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>PR, beats/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>7/20 (35.0%)</td>
<td>16/20 (80.0%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Return to baseline</td>
<td>7/7 (100%)</td>
<td>14/16 (87.5%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Time to baseline (min), median (IQR)</td>
<td>2.5 (1.3–5.7)</td>
<td>6.2 (2.0–13.0)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

DBP = diastolic blood pressure. IQR = interquartile range. MAP = mean arterial pressure. PR = pulse rate. SBP = systolic blood pressure. * Baseline was defined as the mean of the three values before fluid infusion. Response was defined as any rise above this level after the termination of the fluid bolus except for PR, for which a response was defined as a decrease below this level. Subjects returned to baseline when three consecutive values were back at or below baseline (above in the case of PR).

was no significant difference in body temperature between groups at 120 minutes (P = 0.26) (online Appendix, Figure 12). None of the participants had any instances of shivering.

Discussion

Key findings

We conducted a randomised, controlled, crossover study to test the hypothesis that varying the temperature of the FB given would significantly change the cardiac index and MAP response to such FB. During FB infusion, we found a statistically significant greater increase in cardiac index with warm fluid. In contrast, we observed that a room temperature FB significantly decreased body temperature and induced a statistically significant increase in MAP and DBP and decrease in PR. Since the difference in cardiac index was small, and there was a corresponding difference in PR, it is plausible that the difference in cardiac index was due to this change in PR rather than a change in SV. Moreover, we found that all of the above effects were short lived.

Relationship with previous studies

This is the first study to compare changes in cardiac index and MAP in humans after an FB at room temperature or at body temperature with a clinically relevant fluid volume. However, our findings are consistent with the study by Tølløfsrud and colleagues who found similar differences in BP with larger fluid volumes of similar temperatures. The FB temperature effect on cardiac index was divergent from the MAP effect. This study together with studies by Frank and colleagues have previously explored that more severe lowering of core temperature by infusion of cold fluids can have haemodynamic effects, with a release of catecholamines and pressor response. This observation concurs with other data that increases in MAP do not reliably reflect increases in cardiac output. The volunteers showed a response to fluids, both regarding MAP and cardiac index. This is in accordance with other studies that have shown fluid responsiveness in most healthy volunteers without volume depletion, whereas fluid responsiveness perioperatively has been found to be anywhere from 28% to 51%, and around 50% in the intensive care unit. The effects of the FB dissipated at a faster rate than in than previous studies; however, several of these studies did not measure the response continuously but only at set intervals.

Study implications

Our findings imply that much of the MAP increase seen in clinical practice when an FB is given at room temperature may be due to the cooling effect of rapidly delivered cold fluid. More specifically, by showing that only 15% (0.6 mmHg or 4 mmHg) of the MAP increase with room temperature was achieved when the same volume was given at body temperature, our observations imply that about 85% of the
MAP increase seen when a 500 mL crystalloid FB is given to humans is not due to the fluid itself but simply to the fact that such fluid is much colder than core temperature. The findings challenge the current understanding of the mechanism responsible for the effect of FB on MAP.

Study strengths and limitations

The volumes and temperatures mirror what is used in clinical practice to approximate clinical settings; we monitored the haemodynamic effects for 120 minutes, while most other studies of FB therapy have limited their monitoring to 60 minutes. Moreover, we monitored not only PR and BP but also cardiac index, which allowed us to document how these parameters diverge in their response to fluids with different temperatures. We performed continuous cardiac index and non-invasive BP measurements using a validated, evidence-supported non-invasive method. We chose to use non-invasive monitoring as this device has proven accurate in measuring both cardiac index and MAP in patients without critical illness in the operation room setting. In cardiac surgery, the correlation between BP measured by arterial clamp and invasive methods has shown to be above 95% as well as a significant correlation for cardiac output. Since this was a volunteer study, using invasive monitoring on the subjects was not ethically justified. Moreover, both groups used the same measurement technology, minimising measurement and ascertainment bias. Finally, given that this study was performed in human subjects and given the growing interest in the epidemiology and effects of fluid therapy in critically ill patients and in those who received major surgery, the findings of this study have clinical relevance.

Our study carries some limitations. It was conducted in volunteers rather than patients. Therefore, care should be taken about implications about the effect of different FB temperatures in patients with sepsis receiving FB therapy. However, volunteer studies are the first necessary step in the evaluation of the effect of fluid temperature on systemic haemodynamics. Also, patients presenting for outpatient procedures might be comparable to our healthy, fasted volunteers without circulatory impairment and respond similarly. Our study only tested acetated Ringer’s solution and the results might not be the same using other fluid types. Non-core temperature was measured rather than core temperature, and a warmer fluid temperature may more accurately reflect core temperature. We did not measure other effects of the FB such as urinary output or central venous pressure. Such measurements would have required invasive procedures that would have been unjustified in volunteers and would have provided data on variables of uncertain clinical value.

Conclusion

In healthy volunteers, warming an FB to body temperature leads to a slight increase in cardiac index and PR but not in MAP compared with administration at room temperature. A room-temperature FB decreases PR and increases MAP. The haemodynamic effects of an FB on cardiac index were most apparent during the infusion and dissipated after 15–45 minutes depending on fluid temperature. These observations imply that, in healthy volunteers, fluid temperature is a mediator of the haemodynamic effect of an FB. A randomised trial in the critically ill setting addressing this is warranted to investigate if this observation has implications for clinical practice.

Acknowledgements: We thank Fuad Bahram (Södersjukhuset Research Center) and Mona-Britt Divander (research nurse at the Department of Anaesthesiology and Intensive Care) for their work, the volunteers for their participation, and Edwards Lifescience for the equipment.

Competing interests

None declared.

Author details

Olof Wall1,2

Lars Ehrenberg3

Eva Joelsson-Alm1,3

Johan Mårtensson5

Rinaldo Bellomo6,7,8,9

Christer Svensén1,3

Maria Cronhjort1,3

1 Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.
2 Department of Anaesthesiology and Intensive Care, Danderyds Sjukhus, Stockholm, Sweden.
3 Department of Anaesthesiology and Intensive Care, Södersjukhuset, Stockholm, Sweden
4 Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care Medicine, Karolinska Institutet, Stockholm, Sweden.
5 Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.
6 Department of Intensive Care, Austin Hospital, Melbourne, Vic, Australia.
7 School of Medicine, University of Melbourne, Melbourne, Vic, Australia.
8 Department of Intensive Care, Royal Melbourne, Hospital, Melbourne, Vic, Australia.
9 Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic, Australia.

Correspondence: olof.wall@sll.se
References

When you need to contact another doctor ... you need a directory you can trust!

The Medical Directory of Australia (MDA) is the leading directory of healthcare practitioners and medical facilities in Australia. Provided by the publisher of the *Medical Journal of Australia*, the MDA has a large team of researchers validating every entry ensuring the quality of the listings, making the MDA the directory most trusted by doctors.

It is free to be listed in the directory!

With detailed search criteria, including name, discipline, medical interests, languages spoken, location, qualifications and more, the directory provides accurate search results 24/7.

It is updated daily and available to use online for an annual subscription.

For directory features and more, visit www.mda.com.au or call 02 9562 6666

To enquire about subscription plans, contact subscriptions@mda.com.au

For listings or to check your entry, email your details to listings@mda.com.au