Effect of midazolam versus propofol sedation on markers of neurological injury and outcome after isolated severe head injury: a pilot study

Kamran A Ghori, Dominic C Harmon, Abdurrahim Elashaal, Mark Butler, Fergus Walsh, Michael G J O’Sullivan and George D Shorten

Head injury is the leading cause of mortality in young patients and often has a devastating neurological outcome.1,2 A substantial proportion of victims die, and many others have permanent disability. The outcome after severe head injury is determined by both the primary and secondary brain injuries. The management of patients with head injury aims to prevent, limit and treat the process that leads to secondary brain injury.

Midazolam is commonly used as a sedative in intensive care units, partly because of its favourable pharmacokinetic properties.3 In critically ill trauma patients, propofol has been compared with midazolam as a sedative in terms of safety and efficacy.4 However, the neuroprotective effects of the two drugs have not been studied in terms of the biochemical markers of brain injury.

Glial cell S100β protein has been extensively studied as a marker of brain injury. Increased serum concentrations of S100β are associated with adverse neurological outcome after stroke,5,6 subarachnoid haemorrhage,7,8 and coronary artery bypass graft surgery.9,10 Nitric oxide (NO) has numerous functions in human physiology11 and plays an important role in the pathophysiology of ischaemic brain injury.12 After head injury in humans, increased concentrations of NO in cerebrospinal fluid (CSF) and plasma are associated with early injury severity.11

We conducted a prospective, double-blind, randomised trial:
• to compare serum S100β and plasma NO concentrations during the first 5 days after ICU admission between patients with isolated severe head injury who received a midazolam-based sedation regimen and those who received a propofol-based regimen; and
• to assess the association between these S100β and NO concentrations and neurological outcome 3 months later.

Methods
The study was approved by the institutional ethics committee in May 2003, and written informed consent was obtained from the first-degree relatives of 30 patients with head injury. Inclusion criteria were patient age, 18 to
65 years, isolated head injury with post-resuscitation score on the Glasgow Coma Scale (GCS) less than 9, and requirement for mechanical ventilation. Exclusion criteria were multiple trauma, previous organic brain disease or brain surgery, renal or hepatic failure, body mass index greater than 32 kg/m², spinal cord injury, pregnancy, and substance abuse identified at the time of ICU admission.

Table 1. Treatment of increased intracranial pressure

- Increased sedation or analgesia with bolus midazolam, propofol and/or morphine (as described in Methods section).
- Mannitol (0.5–1 mg/kg; maximum of 240 g or serum osmolality > 310 mmol).
- Vecuronium boluses if needed for muscle paralysis, if above measures fail.

Table 2. Glasgow Outcome Scale for classification of neurological outcome

5 Good recovery, resumption of life despite minor deficits
4 Moderate disability (but not dependent), able to travel by public transport, able to work in public sheltered setting
3 Severe disability, dependent on others for activities of daily living
2 Persistent vegetative state
1 Dead

Mean daily measurements of ICP and cerebral perfusion pressure (CPP), and total time that ICP was greater than 20 mmHg, and CPP was less than 70 mmHg, were recorded. Mean daily arterial blood pressure, central venous pressure and rectal temperature were also recorded, as was the use of neuromuscular blocking agents, barbiturates and vasopressors. Other routine ICU investigations, including full blood count, plasma urea, creatinine and electrolyte concentrations, and blood coagulation indices were recorded daily to monitor organ function. Adequacy of ventilation was monitored by routine chest x-ray and serial arterial blood gas analysis. Patients were evaluated daily for signs and symptoms of sepsis according to the sepsis criteria described by Parillo et al. Arterial blood samples were taken for measurement of S100β and NO concentration at the time of ICU admission and daily for 5 days thereafter. Neurological outcome was assessed 3 months after injury using the Glasgow Outcome Scale (GOS; Table 2) by an independent investigator who was blinded to treatment groups. Outcome was reported as good (GOS, 4–5) or poor (GOS, 1–3).

S100β concentration
S100β concentration was analysed using a monoclonal two-site immunoradiometric assay (AB Sangtec Medical, Bromma, Sweden), using three monoclonal antibodies: SMST12, SMSK25 and SMSK28. These antibodies detect the S100β isoforms αβ and ββ, which are specific for astroglial cells. Serum samples were diluted with phosphate buffer and incubated with plastic beads coated with the monoclonal antibodies. During incubation, S100β was bound to the antibody-coated beads. After 1 hour of incubation, the beads were washed to remove any unbound material and incubated with 125I-labelled anti-S100β antibody, which binds to the S100β captured by the beaded antibody. After 2 hours of incubation and subsequent washing, the amount of radioactive label bound to S100β was measured with a gamma counter. The limit of sensitivity of the kit is 0.02 μg/L.

Nitric oxide products
Concentration of the products of nitric oxide (nitrate and nitrite) was determined using a Sievers 280 NOA chemiluminescent analyser (Sievers Instruments, Boulder, Col,
USA). In solution, NO reacts with molecular oxygen to form nitrite (NO$_2^-$), and with oxyhaemoglobin and superoxide anion (O$_2^-$) to form nitrate (NO$_3^-$). By adding acid and reducing agents, nitrate and nitrite are converted to NO. An inert gas is then used to purge NO from the solution for subsequent detection by chemiluminescence. The detector is based on the reaction of NO with ozone (O$_3$), which produces nitrogen dioxide in an excited state (NO$_2^*$) and molecular oxygen. The excited state of NO$_2^*$ decays to give an infrared chemiluminescence above 600 nm. Light emission is directly related to the NO content of the sample. Sodium nitrate and nitrite were used as standards.

Statistical analyses

Data were expressed as mean and standard deviation (SD). Continuous variables were compared between groups by analysis of variance or Student’s t test. Differences in non-parametric data, such as GCS or CT finding, were assessed by Mann–Whitney U test. A P value < 0.05 was considered significant.

Results

Thirty patients with severe head injury were enrolled in the study. Two patients in the propofol group were withdrawn from the study as they received propofol for less than 10 hours. The causes of brain injury in the remaining 28 were: road traffic accident (18 patients [64%]), fall from a height (8 [28%]), and assault (2 [8%]).

The midazolam and propofol groups were similar in terms of ICP (Figure 1), use of vasopressors (Table 3). They were also similar in age, GCS, type of injury and treatment (Table 3). More patients in the midazolam group had multiple contusions on initial CT scan. The time from initial injury to entry into the study (defined by the commencement of midazolam or propofol sedation) was (mean ± SD) 10.7 ± 5.2 h and was similar in the two groups (12.8 ± 5.7 h [midazolam] v 9.0 ± 3.3 h [propofol]).

Neurological outcome and biochemical markers

A good neurological outcome (GOS, 4–5) was observed in 8/15 patients (53%) in the midazolam group and 7/13 patients (54%) in the propofol group. Of the patients who had a poor neurological outcome (GOS, 1–3), eight died (midazolam, 3/15 [20%] v propofol, 5/13 [38%]; P = 0.07), and five (17%) had severe disability (midazolam, 3/15 [20%] v propofol, 2/13 [15%]; P = 0.8).

Patients who had a poor neurological outcome at 3 months had a higher mean serum S100β concentration on admission to the ICU than those who had a good outcome.
They also had higher S100β concentrations on Days 1–4 after ICU admission (Figure 2A).

Mean plasma concentration of NO products was similar in patients with subsequent good and poor neurological outcomes, both at the time of ICU admission (20.41±13.2 v 20.01±10.3 μM; P=0.7) and over the ensuing 5 days.

Effect of midazolam and propofol on biochemical markers

In the patients with a poor outcome, serum S100β concentrations were similar in the midazolam and propofol groups at each time point (Figure 2B). However, plasma concentration of NO products was greater in those given propofol than in those given midazolam on Days 3–5 after ICU admission (Day 3, 26.36±8.4 v 14.45±7.34 μM; Day 4, 34.21±10.5 v 14.43±6.22 μM; and Day 5, 44.28±12.22 v 11.67±6.3 μM; P<0.05) (Figure 3).

Discussion

Our most important finding was that serum S100β concentrations in the first 4 days after severe head injury were higher in patients who had a poor neurological outcome than in those who had a good outcome. Neurological outcome was similar in those who received midazolam and those who received propofol for sedation. Concentrations of S100β and NO products were also similar in patients who received midazolam and those who received propofol.

Anaesthetic drugs can affect ischaemic and traumatic brain injury by numerous mechanisms, and their potential for neuroprotection is clinically relevant. Midazolam and propofol are the commonly used sedatives in the ICU, but differ in their efficacy, safety and cost-benefit profiles in sedating ICU patients. Kelly et al showed statistical differences in ICP and CPP measurements between patients with head injury given opioids and those given propofol sedation, but no significant difference in long-term clinical outcome. When used for long-term ICU sedation, propofol has been associated with more systemic adverse effects than midazolam. In our study, haemodynamic parameters were similar in patients who received midazolam and those who received propofol. Three other studies that compared propofol and midazolam for short-term sedation in patients with moderate to severe brain injury showed that, after 24 hours’ infusion, there was no difference in ICP and CPP.

The recovery time (to extubation) was shorter after short-term sedation with propofol compared with midazolam.

In patients with trauma, long-term sedation with propofol is associated with increased plasma lipid content, and greater degree of failure to achieve target sedation when...
compared with midazolam. However, achieving desired sedation differs between head injury and trauma patients, because of the presence of brain pathology and difficulty in monitoring in the former.23

Benzodiazepines, barbiturates and propofol inhibit neuronal activity through the action of γ-aminobutyric acid (GABA).24 In healthy volunteers, midazolam decreased cerebral blood flow and rate of cerebral oxygen utilisation to 22%–43% of baseline.25 It has also been shown that enhancement of GABA activity decreases the excitotoxic neuronal damage that follows neuronal injury. Receptor activation by GABA and GABA agonists increases chloride conductance, which reduces neuronal excitability. Both basic scientific and clinical data support the hypothesis that enhancement of GABA activity can produce neuroprotection.

$S_{100}β$ is a useful marker of the severity of brain injury in both minor and severe brain injury.26 Increased serum $S_{100}β$ concentrations have been associated with poor neurological outcome in brain injury.6-9 Woertgen and colleagues found, similarly to our study, that $S_{100}β$ concentrations increase as early as 24 hours after injury and are predictive of neurological outcome after severe brain injury, but they did not assess the effects of sedative drugs.26 In our study, $S_{100}β$ concentrations were higher for up to 4 days after injury in patients who had a subsequent poor neurological outcome compared with those who had a good outcome. We found no difference in serum concentration of $S_{100}β$ between the midazolam and propofol groups.

Nitric oxide production increases at all stages of cerebral ischaemia.12 Increased concentrations of NO products during brain ischaemia might be a useful marker of the severity of injury. However, our study found no association. This is consistent with the result of Clark and colleagues.13 NO probably has protective and injurious functions at different times after brain ischaemia, and in response to different magnitudes of injury. Among patients with a poor neurological outcome, those who received propofol had higher concentrations of NO products on Days 3–5 than those who received midazolam. However, it is not possible to conclude that either drug has a neuroprotective or pharmacokinetic effect from these limited data. A larger study might show a clinical significance of this finding.

We did not measure CSF concentrations of $S_{100}β$ and NO products, but such measurements might reveal their value as markers of brain injury. A further limitation of our study was the inability to assess level of sedation achieved, as no reliable scoring system exists to measure sedation in patients with brain injury.

Conclusions

- The serum concentrations of markers of neurological injury were similar in patients with severe head injury who received midazolam sedation and those who received propofol.
- Serum $S_{100}β$ concentrations were higher in the group of patients who had a poor neurological outcome at 3 months compared with the group who had a good outcome.
- Plasma NO concentrations were similar in patients with a poor outcome and those with a good outcome.

Acknowledgements

We thank the ICU nursing staff at Cork University Hospital, Ireland, for their kind help in carrying out this study. This investigation was supported by Department of Anaesthesia and Intensive Care Medicine, Cork University Hospital.

Author details

Kamran A Ghori, Specialist Registrar¹
Dominic C Harmon, Specialist Registrar¹
Abdurrahim Elashaal, Neurosurgeon²
Mark Butler, Biochemist³
Fergus Walsh, Consultant Anaesthetist¹
Michael GJ O’Sullivan, Neurosurgeon²
George D Shorten, Professor of Anaesthesia and Intensive Care Medicine¹

¹ Department of Anaesthesia and Intensive Care Medicine.
² Department of Neurosurgery.
³ Department of Biochemistry.

Cork University Hospital and University College Cork, Ireland.

Correspondence: kamrang@hotmail.com

References

